Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu Liuł and Duan-Jun Xu*

Department of Chemistry, Zhejiang University, People's Republic of China
\# Department of Chemical Engineering, Shandong Institute of Light Industry, People's
Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.026$
$w R$ factor $=0.065$
Data-to-parameter ratio $=18.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis(phenylthiourea-кS)copper(I) chloride

The Cu^{I} atom of the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{4}\right] \mathrm{Cl}$, is located on a $\overline{4}$ inversion axis and has distorted tetrahedral coordination geometry, formed by four phenylthiourea S atoms. Within the phenylthiourea ligands, the $\mathrm{C}-\mathrm{N}$ (imino) bonds $[1.341(2) \AA]$ are significantly longer than the $C-$ N (amino) bonds [1.316 (3) \AA]. The Cl^{-}anion is located on another $\overline{4}$ inversion axis and links with four complex cations via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding.

Comment

The significant difference between $\mathrm{C}-\mathrm{N}$ (imino) and $\mathrm{C}-$ N (amino) bond distances within phenylthiourea has recently been revealed (Shen \& Xu, 2004). The title complex, (I), incorporating phenylthiourea, has been prepared and its crystal structure determined in order to compare the structure of phenylthiourea in the free compound with that in the metal complex.

(I)

The molecular structure of (I) is illustrated in Fig. 1. The Cu^{I} atom is located on a $\overline{4}$ inversion axis and has a distorted tetrahedral coordination geometry, formed by four phenylthiourea molecules. The $\mathrm{Cu}-\mathrm{S}$ bond distance of 2.3313 (5) \AA is comparable to 2.3661 (7) \AA found in a tetrahedral thiourea complex of $\mathrm{Cu}^{\mathrm{I}}(\mathrm{Li}, 2004)$, and longer than 2.2121 (10) \AA found in a trigonal planar thiourea complex of Cu^{I} (Wu et al., 2002). The $\mathrm{S}-\mathrm{Cu}-\mathrm{S}^{\mathrm{i}}$ angle $\left[117.38(2)^{\circ}\right]$ is larger than the $\mathrm{S}-$ $\mathrm{Cu}-\mathrm{Si}^{\mathrm{ii}}$ angle [105.666 (10) ${ }^{\circ}$ (Fig. 1) (for symmetry codes, see Table 1).

The $\mathrm{N}-\mathrm{S}$ and $\mathrm{N}-\mathrm{C}$ bond distances (Table 1) both show electron delocalization within the phenylthiourea moiety. The thiourea mean plane is tilted with respect to the phenyl plane, with a dihedral angle of $52.55(9)^{\circ}$, which suggests that there is no conjugation effect between the thiourea and phenyl groups. The $\mathrm{C} 7-\mathrm{N} 1$ (imino) bond $[1.341$ (2) \AA] is 0.025 (3) \AA longer than the $\mathrm{C} 7-\mathrm{N} 2$ (amino) bond $[1.316$ (3) \AA]. This difference is essentially the same as found in free phenylthiourea

Received 23 June 2004 Accepted 29 June 2004 Online 9 July 2004

Figure 1
The molecular structure of (I) with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonding between ions. [Symmetry codes: (i) $1-x,-y, z$; (ii) $\frac{1}{2}+y, \frac{1}{2}-x, \frac{1}{2}-z$; (iii) $\frac{1}{2}-y$, $\left.x-\frac{1}{2}, \frac{3}{2}-z\right]$.

A molecular packing diagram showing four hydrogen bonds (dashed lines) around the Cl^{-}anion.
[0.019 (3) \AA; Shen \& Xu, 2004] and may be due to the induction effect of the phenyl group on the imino group.

The Cl anion is also located on a $\overline{4}$ inversion axis and links with four Cu^{I} complex cations via $\mathrm{N} 2-\mathrm{H} 2 a \cdots \mathrm{Cl}$ hydrogen bonds, as shown in Figs. 1 and 2. The $\mathrm{N} 2 \cdots \mathrm{Cl}$ distance and $\mathrm{N} 2-\mathrm{H} 2 a \cdots \mathrm{Cl}$ angle are 3.4284 (17) \AA and $168(2)^{\circ}$, respectively.

Experimental

An ethanol solution (10 ml) of phenylthiourea $(0.30 \mathrm{~g}, 2 \mathrm{mmol})$ was mixed with an aqueous solution (3 ml) of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.17 \mathrm{~g}$,

1 mmol). The resulting green solution was refluxed for 1 h and then filtered to remove the white precipitate. Pale-yellow single crystals were obtained from the filtrate after 3 d .

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}\right)_{4}\right] \mathrm{Cl}$
Mo $K \alpha$ radiation
$M_{r}=707.85$
Tetragonal, $I \overline{4}$
$a=11.4847$ (3) \AA
$c=12.8612(4) \AA$
$V=1696.37(8) \AA^{3}$
$Z=2$
$D_{x}=1.386 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.68, T_{\text {max }}=0.78$
8326 measured reflections

Refinement

Refinement on F^{2}
Cell parameters from 7866
reflections
$\theta=2.5-26.0^{\circ}$
$\mu=1.00 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, pale yellow
$0.38 \times 0.26 \times 0.24 \mathrm{~mm}$

1957 independent reflections
1868 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 14$
$k=-14 \rightarrow 14$
$l=-16 \rightarrow 16$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.039 P)^{2}\right.$
$+0.2897 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.13 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
932 Friedel Pairs
Flack parameter $=0.001(12)$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cu}-\mathrm{S}$	$2.3313(5)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.429(2)$
$\mathrm{S}-\mathrm{C} 7$	$1.709(2)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.316(3)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.341(2)$		
$\mathrm{S}-\mathrm{Cu}-\mathrm{S}^{\mathrm{i}}$	$117.38(2)$	$\mathrm{S}-\mathrm{Cu}-\mathrm{S}^{\mathrm{ii}}$	$105.666(10)$

Symmetry codes: (i) $1-x,-y, z$; (ii) $\frac{1}{2}+y, \frac{1}{2}-x, \frac{3}{2}-z$.

H atoms of the amino and imino groups were located in a difference Fourier map and refined independently with a fixed isotropic displacement parameter of $0.08 \AA^{2}$. H atoms on the benzene ring were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and included in the final cycles of refinement as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (29973036 and 20240430654).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

metal-organic papers

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi,, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Li, D.-X. (2004). Doctoral Dissertation, Zhejiang University, People's Republic of China.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shen, Y.-H. \& Xu, D.-J. (2004). Acta Cryst. E60, o1193-o1194.
Wu, Z.-Y., Xu, D.-J., Wu, J.-Y. \& Chiang, M. Y. (2002). Acta Cryst. C58, m374m376.

